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Abstract. A previously studied (Enz and Schilling 1986J. Phys. C: Solid State Phys.19 1765)
magnetocrystalline anisotropic Hamiltonian with a magnetic field applied along the medium axis
is reconsidered, with emphasis on the topological phase effect. A quantum inteference effect is
revealed.

Tunnelling of magnetization in mesoscopic systems has attracted remarkable interest in
recent years [1–3]. The total moment of a small ferromagnetic particle, for instance, may
resonate between degenerate energy minima or out of a metastable direction, providing
another example of the macroscopic quantum phenomena [4]. A notable subject in this area
is whether the Berry phase, or Wess–Zumino, Chern–Simons term, gives rise to spin parity
effects, like the well-known Haldane gap in quantum antiferromagnets. Losset al [5] and
von Delft and Henley [6] have confirmed this by demonstrating that, due to the interference
between different paths, the tunnelling splitting can be quenched for magnetic particles with
half-integer spin in the absence of external field. Later, Garg [7] studied the quenching of
tunnelling when a magnetic field is applied along the hard axis of the particle and noted that
the quenching need not be related to Kramers’ degeneracy. Chudnovsky and DiVincenzo [8]
discussed the situation when the external field is along the easy axis. In both cases the
oscillation of the tunnelling splitting with the field is found. Garg [9] later considered the
topological quenching more carefully and showed that the quenching in the tunnelling rate
follows from a selection rule due to an underlying rotational symmetry. The spin parity
effects and quantum propagation of Bloch walls in quasi-one-dimensional ferromagnets were
studied by Braun and Loss [10] very recently, who found that the destructive interference
between opposite chiralities suppresses nearest-neighbour hopping for half-integer spins.
These studies have exhibited interesting quantum interference effects in small magnetic
particles. In this note, we further consider the topological phase effect in the following
Hamiltonian [11]:

H = −k1S
2
x + k2S

2
z − hSy (1)

with positive k1, k2 and h, which may be interpreted as a magnetocrystalline anisotropic
model with a magnetic field applied along the medium axis. Enz and Schilling [11, 12]
have calculated the spin tunnelling rate of this problem, though a possible interference effect
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between different paths was not considered. For 06 h 6 2k1S, the corresponding classical
Hamiltonian of equation (1) possesses a two-fold-degenerate ground state at

θ = π

2
, φ1 = arcsin(h/2k1S) and θ = π

2
, φ2 = π − φ1 (2)

whereS is the spin of the particle.
To start, we write the Euclidean tunnelling amplitude as a spin-coherent-state path

integral:

KE ≡ 〈φ2|e−HT |φ1〉 =
∫

D�e−SE (3)

whereSE = ∫ T/2
−T/2 Ldτ and

L = iSφ̇(1 − cosθ) + E(θ, φ). (4)

The first term of equation (4) defines the Wess–Zumino phase in the north-pole gauge.
In the semiclassical limit, the dominant contribution to the propagator comes from finite

action solutions of the classical equation of motion (instantons). As noted by Enz and
Schilling [11], since the configuration space is a circle, two types of instantons must be
taken into account. We useA to denote the instanton passing throughπ/2 to φ2 from φ1,
andB through 3π/2 to φ1 from φ2. Correspondingly, we have two sorts of anti-instantons:
A− andB−. The subtle point of the calculation is how to arrange the instantons and anti-
instantons appropriately to satisfy the boundary condition when using the dilute instanton
approximation [13]. We note that a finite action configuration starting fromφ1 and ending
at φ2 can be an arbitrary permutation of the pairs (AB), (AA−), (B−B) and (B−A−) plus
an additionalA or B−. If we let m, n, p andq be the numbers ofA, B , A− andB− in
a finite action configuration, andi, j , k and l those of (AB), (AA−), (B−B) and (B−A−),
we have

i + j = m i + k = n j + l = p k + l = q. (5)

Thereforem + q = n + p and only three variables are independent.
We may now write the expression for the tunnelling amplitude

KE =
√

ω

πh̄
e−ω0T/2

∑
mnpq

N(m, n, p, q)

(m + n + p + q + 1)!

[
(JAkAT e−SA)m+p+1(JBkBT e−SB )n+q

×eiS(π−2φ1)(m−p+1)eiS(π+2φ1)(n−q) + (JAkAT e−SA)m+p(JBkBT e−SB )n+q+1

×eiS(π−2φ1)(m−p)eiS(π+2φ1)(n−q+1)
]
δm+q,n+p (6)

whereω0 is the zero-point frequency in either well,JA is the Faddeev–Popov determinant (or
Jacobian) andSA is the action of instantonA. The indexB denotes corresponding quantities
of instantonB. The definition ofkA(kB) is that of Coleman [13]. These quantities have
been calculated by Enz and Schilling [11, 12] and they are not of interest here. To do the
summation, we needN (m, n, p, q) which represents the number of different finite action
configurations for a given set of{m, n, p, q}. It can be calculated as

N(m, n, p, q) =
min{m,n}∑

i=max{0,n−q}

(i + j + k + l)!

i!j !k!l!
(7)

which has a simple result

N(m, n, p, q) = (m + q)!2

m!n!p!q!
. (8)
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Inserting equation (8) into (6), we obtain

KE =
√

ω

πh̄
e−ω0T/2 sinh

[
JAkAT e−SA + JBkBT e−SB cos(2Sπ)

]
(9)

from which one can read off the tunnelling splitting

1E = JAkAe−SA + JBkBe−SB cos(2Sπ) (10)

or

1E = 1EA + 1EB cos(2Sπ). (10a)

This improves equation (8a) of Enz and Schilling [11]. Therefore the interference is either
constructive or destructive depending only on the parity of the spinS. In the absence of
the external field,1EA equals1EB , and for half-integer spin the quenching result [5, 6]
is recovered naturally. Moreover, we observe no oscillation of1E with the external field,
which is present when the field is along either the easy [7] or hard axis [8]. One expects
a monotonic increase [12] of the tunnelling rate with the external field if it is not too
large to destroy the barrier. For the topological effects in antiferromagnetic particles, as
noted by Chudnovsky and DiVincenzo [8], the relevant quantity is the excess spin owing to
the noncompensation of sublattices and the calculation here can apply to antiferromagnetic
particles directly.

Various dissipative effects of the environment are important in the macroscopic quantum
tunnelling of magnetism. The most important is, however, the interaction between spins
of the particle and the spins of the environment (see [8] and references therein), since the
change of a single 1/2 spin would transform the constructive interference to destructive
or vice versa. Several studies [14, 15] suggest that the environmental spins suppress
macroscopic quantum coherence severely. Whether the quantum interference effect can
be observed experimentally is still an interesting problem deserving further study.

In summary, we have reconsidered the macroscopic quantum coherence in a
magnetocrystalline anisotropic Hamiltonian with an external magnetic field applied along
the medium axis, which has been studied by Enz and Schilling. The quantum interference
between topologically different paths is revealed.

Helpful discussions with Su-Peng Kou and Yun-Bo Zhang are appreciated. XBW would like
to acknowledge the hospitality extended to him by the International Centre for Theoretical
Physics, Trieste.
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